Research on the Heterogeneity of Green Biased Technology Progress in Chinese Industries: Decomposition Index Analysis Based on the Slacks-based measure integrating
DOI:
https://doi.org/10.58567/jea01020002Keywords:
Green input biased technological progress, Green output biased technological progress, Slacks-based measure integrating, Factor bias, Total Factor ProductivityAbstract
Green biased technological progress takes into account the influence of energy input and pollution emission, which is of great significance to China's green development. This paper decomposes technological progress into green input biased technological progress (IBTC) and green output biased technological progress (OBTC) using the Slacks-based measure integrating (SBM) model. Factor bias in technological progress is determined based on data from 34 industries in China from 2000 to 2015. The results show that the green biased technology progress exists significantly in the industry, and most of them promote the growth of green total factor productivity. IBTC first tends to consume energy to pursue capital between capital input and energy input, while it tends to save energy after the Eleventh Five-Year Plan. Between labor input and energy input, it is biased towards saving labor and consume resources. OBTC is biased towards promoting industrial growth and curbing pollution emissions. Medium and light polluting industries are biased towards promoting industrial growth and curbing pollution emissions, while heavy polluting industries are biased towards emitting more pollution.
References
Abate, G. T., Rashid, S., Borzaga, C., & Getnet, K. (2016). Rural finance and agricultural technology adoption in Ethiopia: does the institutional design of lending organizations matter?. World Development, 84, 235-253. https://doi.org/10.1016/j.worlddev.2016.03.003
Acemoglu, D. (1998). Why do new technologies complement skills? Directed technical change and wage inequality. The Quarterly Journal of Economics, 113(4), 1055-1089. 10.1162/003355398555838
Acemoglu, D. (2007). Equilibrium bias of technology. Econometrica, 75(5), 1371-1409. 10.1111/j.1468-0262.2007.00797.x
Acemoglu, D., Aghion, P., Bursztyn, L., & Hemous, D. (2012). The environment and directed technical change. American economic review, 102(1), 131-66. 10.1257/aer.102.1.131
Bagchi, M., Rahman, S., & Shunbo, Y. (2019). Growth in agricultural productivity and its components in Bangladeshi regions (1987–2009): An application of bootstrapped Data Envelopment Analysis (DEA). Economies, 7(2), 37. https://doi.org/10.3390/economies7020037
Barros, C. P., & Weber, W. L. (2009). Productivity growth and biased technological change in UK airports. Transportation Research Part E: Logistics and Transportation Review, 45(4), 642-653. https://doi.org/10.1016/j.tre.2009.01.004
Barros, C. P., & Weber, W. L. (2009). Productivity growth and biased technological change in UK airports. Transportation Research Part E: Logistics and Transportation Review, 45(4), 642-653. https://doi.org/10.1016/j.tre.2009.01.004
Barros, C. P., Managi, S., & Yoshida, Y. (2010). Productivity growth and biased technological change in Japanese airports.Transport Policy, 17(4), 259-265. https://doi.org/10.1016/j.tranpol.2010.01.009
Chongvilaivan, A. (2012). Learning by exporting and high-tech capital deepening in Singapore manufacturing industries, 1974–2006. Applied Economics, 44(20), 2551-2568. 10.1080/00036846.2011.566184
Coakes, E. W., Smith, P. A., & Alwis, D. (2011). Sustainable innovation and right to market. Information Systems Management,28(1), 30-42. 10.1080/10580530.2011.536110
Conte, A., & Vivarelli, M. (2007). Globalization and employment: Imported skill biased technological change in developing countries. http://hdl.handle.net/10419/25583
Conte, A., & Vivarelli, M. (2011). Imported skill‐biased technological change in developing countries. The Developing Economies, 49(1), 36-65. https://doi.org/10.1111/j.1746-1049.2010.00121.x
Drandakis, E. M., & Phelps, E. S. (1966). A model of induced invention, growth and distribution.The Economic Journal, 76(304), 823-840. 10.2307/2229086
Du, K., & Li, J. (2019). Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy, 131, 240-250. https://doi.org/10.1016/j.enpol.2019.04.033
Elsby, M. W., Hobijn, B., & Şahin, A. (2013). The decline of the US labor share. Brookings Papers on Economic Activity, 2013(2), 1-63. 10.1353/eca.2013.0016
Estache, A., de la Fe, B. T., & Trujillo, L. (2004). Sources of efficiency gains in port reform: a DEA decomposition of a Malmquist TFP index for Mexico. Utilities policy, 12(4), 221-230. https://doi.org/10.1016/j.jup.2004.04.013
Färe, R., Grifell‐Tatjé, E., Grosskopf, S., & Knox Lovell, C. A. (1997). Biased technical change and the Malmquist productivity index. Scandinavian journal of Economics, 99(1), 119-127. https://doi.org/10.1111/1467-9442.00051
Färe, R., Grosskopf, S., & Lee, W. F. (2001). Productivity and technical change: the case of Taiwan. Applied Economics, 33(15), 1911-1925. 10.1080/00036840010018711
Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth, technical progress, and efficiency change in industrialized countries. The American economic review, 66-83. 10.2307/2117971
Feng C, Zheng C J, Shan M L. (2020). The clarification for the features, temporal variations, and potential factors of global carbon dioxide emissions. Journal of Cleaner Production, 255: 120250. https://doi.org/10.1016/j.jclepro.2020.120250
Galor, O., & Moav, O. (2000). Ability-biased technological transition, wage inequality, and economic growth. The Quarterly Journal of Economics, 115(2), 469-497. 10.2307/2587000
Goos, M. (2018). The impact of technological progress on labour markets: policy challenges. Oxford review of economic policy,34(3), 362-375. 10.1093/oxrep/gry002
Goos, M., Manning, A., & Salomons, A. (2014). Explaining job polarization: Routine-biased technological change and offshoring.American economic review, 104(8), 2509-26. 10.1257/aer.104.8.2509
Harrigan, J., & Reshef, A. (2015). Skill‐biased heterogeneous firms, trade liberalization and the skill premium. Canadian Journal of Economics/Revue canadienne d'économique, 48(3), 1024-1066. https://doi.org/10.1111/caje.12167
Hoang, V. N., & Coelli, T. (2011). Measurement of agricultural total factor productivity growth incorporating environmental factors: a nutrients balance approach. Journal of Environmental Economics and Management, 62(3), 462-474. https://doi.org/10.1016/j.jeem.2011.05.009
Huang L, Rao C, van der Kuijp T J, et al. (2017). A comparison of individual exposure, perception, and acceptable levels of PM2. 5 with air pollution policy objectives in China. Environmental research, 157: 78-86. https://doi.org/10.1016/j.envres.2017.05.012
Jaumotte, F., Lall, S., & Papageorgiou, C. (2013). Rising income inequality: technology, or trade and financial globalization? IMF Economic Review, 61(2), 271-309. 10.1057/imfer.2013.7
Jorgenson, D. W., Ho, M. S., Samuels, J. D., & Stiroh, K. J. (2007). Industry origins of the American productivity resurgence. Economic Systems Research, 19(3), 229-252. : http://dx.doi.org/10.1080/09535310701571885
Karabarbounis, L., & Neiman, B. (2014). The global decline of the labor share. The Quarterly journal of economics, 129(1), 61-103. 10.1093/qje/qjt032
Kennedy, C. (1964). Induced bias in innovation and the theory of distribution. The Economic Journal, 74(295), 541-547. 10.2307/1927763
Kiley, M. T. (1999). The supply of skilled labour and skill‐biased technological progress. The Economic Journal, 109(458), 708-724. 10.1111/1468-0297.00470
Kratena, K. (2007). Technical change, investment and energy intensity. Economic Systems Research, 19(3), 295-314. 10.1080/09535310701572008
Li, B., & Wu, S. (2017). Effects of local and civil environmental regulation on green total factor productivity in China: A spatial Durbin econometric analysis. Journal of Cleaner Production, 153, 342-353. https://doi.org/10.1016/j.jclepro.2016.10.042
Li, J., See, K. F., & Chi, J. (2019). Water resources and water pollution emissions in China's industrial sector: A green-biased technological progress analysis. Journal of cleaner production,229, 1412-1426. https://doi.org/10.1016/j.jclepro.2019.03.216
Li, K., & Lin, B. (2018). How to promote energy efficiency through technological progress in China?. Energy, 143, 812-821. https://doi.org/10.1016/j.energy.2017.11.047
Luo, C., & Zhang, J. (2010). Declining labor share: is China's case different?. China & World Economy, 18(6), 1-18. https://doi.org/10.1111/j.1749-124X.2010.01217.x
Managi, S., & Karemera, D. (2004). Input and output biased technological change in US agriculture. Applied Economics Letters, 11(5), 283-286. 10.1080/1350485042000221526
Molinos-Senante, M., Hernández-Sancho, F., Mocholí-Arce, M., & Sala-Garrido, R. (2014). Economic and environmental performance of wastewater treatment plants: Potential reductions in greenhouse gases emissions. Resource and Energy Economics, 38, 125-140. https://doi.org/10.1016/j.reseneeco.2014.07.001
Olusegun, S. J., Freitas, E. T., Lara, L. R., & Mohallem, N. D. (2019). Synergistic effect of a spinel ferrite on the adsorption capacity of nano bio-silica for the removal of methylene blue.Environmental Technology, 1-14. : https://doi.org/10.1080/09593330.2019.1694083
Padhan H, Padhang P C, Tiwari A K, et al. (2020). Renewable energy consumption and robust globalization (s) in OECD countries: Do oil, carbon emissions and economic activity matter?. Energy Strategy Reviews, 32: 100535. https://doi.org/10.1016/j.esr.2020.100535
Romer, P. M. (1990). Endogenous technological change. Journal of political Economy, 98(5), 71-102. 10.1086/261725
Samuelson, P. (1965). A Theory of Induced Innovation along Kennedy Vs Weizâcker Lines.Review of Economics and Statistics,47(4),444-464. 10.2307/1927763
Shao, C., Guan, Y., Wan, Z., Guo, C., Chu, C., & Ju, M. (2014). Performance and decomposition analyses of carbon emissions from industrial energy consumption in Tianjin, China. Journal of Cleaner Production, 64, 590-601. https://doi.org/10.1016/j.jclepro.2013.08.017
Shao, S., Luan, R., Yang, Z., & Li, C. (2016). Does directed technological change get greener: empirical evidence from Shanghai's industrial green development transformation.Ecological Indicators, 69, 758-770. https://doi.org/10.1016/j.ecolind.2016.04.050
Shen, N., Liao, H., Deng, R., & Wang, Q. (2019). Different types of environmental regulations and the heterogeneous influence on the environmental total factor productivity: empirical analysis of China's industry. Journal of Cleaner Production, 211, 171-184. https://doi.org/10.1016/j.jclepro.2018.11.170
Shu, T., Zhong, X., & Zhang, S. (2011). TFP electricity consumption efficiency and influencing factor analysis based on DEA method. Energy Procedia, 12, 91-97. https://doi.org/10.1016/j.egypro.2011.10.013
Song, M., Fisher, R., & Kwoh, Y. (2019). Technological challenges of green innovation and sustainable resource management with large scale data. Technological Forecasting and Social Change,144, 361-368. https://doi.org/10.1016/j.techfore.2018.07.055
Song, M., Wang, S., & Wu, K. (2018). Environment-biased technological progress and industrial land-use efficiency in China’s new normal. Annals of Operations Research, 268(1-2), 425-440. 10.1007/s10479-016-2307-0
Wang, C., Liao, H., Pan, S. Y., Zhao, L. T., & Wei, Y. M. (2014). The fluctuations of China’s energy intensity: Biased technical change. Applied energy, 135, 407-414. https://doi.org/10.1016/j.apenergy.2014.06.088
Wang, K., & Wei, Y. M. (2016). Sources of energy productivity change in China during 1997–2012: A decomposition analysis based on the Luenberger productivity indicator. Energy Economics, 54, 50-59. https://doi.org/10.1016/j.eneco.2015.11.013
Weber, W. L., & Domazlicky, B. R. (1999). Total factor productivity growth in manufacturing: a regional approach using linear programming. Regional Science and Urban Economics, 29(1), 105-122. https://doi.org/10.1016/S0166-0462(98)00013-1
Wei, Z., Han, B., Han, L., & Shi, Y. (2019). Factor substitution, diversified sources on biased technological progress and decomposition of energy intensity in China's high-tech industry.Journal of cleaner production, 231, 87-97. https://doi.org/10.1016/j.jclepro.2019.05.223
Xia F, Xu J. (2020). Green total factor productivity: A re-examination of quality of growth for provinces in China. China Economic Review, 101454. https://doi.org/10.1016/j.chieco.2020.101454
Xu W, Sun J, Liu Y, et al. (2019). Spatiotemporal variation and socioeconomic drivers of air pollution in China during 2005–2016. Journal of environmental management, 245: 66-75. https://doi.org/10.1016/j.jenvman.2019.05.041
Yu, M. M., & Chen, L. H. (2020). Evaluation of efficiency and technological bias of tourist hotels by a meta-frontier DEA model.Journal of the Operational Research Society, 71(5), 718-732. https://doi.org/10.1080/01605682.2019.1578625
Zhang, J. (2008). Estimation of China's provincial capital stock (1952–2004) with applications. Journal of Chinese Economic and Business Studies, 6(2), 177-196. http://dx.doi.org/10.1080/14765280802028302
Zheng D, Shi M. (2017). Multiple environmental policies and pollution haven hypothesis: evidence from China's polluting industries. Journal of Cleaner Production, 141: 295-304. https://doi.org/10.1016/j.jclepro.2016.09.091
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Yuxin Meng, Lu Liu, Zhenlong Xu, Wenwen Gong, Guanpeng Yan
This work is licensed under a Creative Commons Attribution 4.0 International License.