Abstract
Cardiovascular disease is still a disease with high incidence rate and mortality. Although advanced technology continues to increase our understanding of cardiovascular disease, its diagnosis and treatment still have limitations. As an emerging interdisciplinary method, nanotechnology has shown enormous clinical application potential. Nanomaterials have unique physical and chemical properties, which help to improve the sensitivity and specificity of biosensor technology and molecular imaging technology in the diagnosis of cardiovascular diseases. This paper first summarizes the versatility of nanomaterials, the physicochemical adjustability of biomolecular engineering, the design strategy of nanoparticles in cardio cerebral Vascular disease, the application of nanomaterials in the diagnosis and treatment of common cardiovascular diseases, and the use of nanomaterials can significantly improve the diagnostic sensitivity, specificity and therapeutic effect. Subsequently, the article summarized various nanomaterials. Finally, the article demonstrated the potential of the antioxidant/anti-inflammatory and photoelectric/photothermal properties of nanomaterials to be directly applied to the treatment of cardiovascular diseases.
References
Wong IY, Bhatia SN, Toner M. Nanotechnology: emerging tools for biology and medicine [J].Genes Dev, 2013, 27(22): 2397-2408. http://genesdev.cshlp.org/content/27/22/2397
Karimi M, Zare H, Bakhshian NA, et al. Nanotechnology in diagnosis and treatment of coronary artery disease[J].Nanomedicine( Lond) , 2016, 11( 5) : 513-530.https://doi.org/10.2217/nnm.16.3
Ambesh P, Campia U, Obiagwu C, et al. Nanomedicine in coronary artery disease [J].Indian Heart J, 2017, 69( 2) : 244-251. https://doi.org/10.1016/j.ihj.2017.02.007
Peters D, Kastantin M, Kotamraju V, et al. Targeting atherosclerosis by using modular, multifunctional micelles [J]. Proc Natl Acad Sci U S A, 2009, 106 (24): 9815-9819. https://doi.org/10.1073/pnas.0903369106
Cyrus T, Wickline SA, Lanza GM. Nanotechnology in interventional cardiology [J].Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2012, 4(1): 82-95. https://doi.org/10.1002/wnan.154
Tsukie N, Nakano K, Matoba T, et al. Pitavastatin-incorporated nanoparticle-eluting stents attenuate in-stent stenosis without delayed endothelial healing effects in a porcine coronary artery model[J].J Atheroscler Thromb, 2013, 20( 1) : 32-45. http://dx.doi.org/10.5551/jat.13862
Madhurantakam S, Babu KJ, Rayappan JBB, et al. Nanotechnology-based electrochemical detection strategies for hypertension markers[J].Biosens Bioelectron, 2018, 116: 67-80. https://doi.org/10.1016/j.bios.2018.05.034
Sun B, Gou Y, Ma Y, et al. Investigate electrochemical immunosensor of cortisol based on gold nanoparticles /magnetic functionalized reduced graphene oxide [J].Biosens Bioelectron, 2017, 88: 55-62. https://doi.org/10.1016/j.bios.2016.07.047
Alam T, Khan S, Gaba B, et al. Nanocarriers as treatment modalities for hypertension[J].Drug Deliv, 2017, 24( 1) : 358-369. https://doi.org/10.1080/10717544.2016.1255999
Li, L.; Chen, C.; Liu, H.; Fu, C.; Tan, L.; Wang, S.; Fu, S.; Liu, X.; Meng, X.; Liu, H. Multifunctional Carbon-Silica Nanocapsules with Gold Core for Synergistic Photothermal and Chemo-Cancer Therapy under the Guidance of Bimodal Imaging. Adv. Funct. Mater. 2016, 26, 4252-4261. https://doi.org/10.1002/adfm.201600985
Song, Y. Y.; Li, C.; Yang, X. Q.; An, J.; Cheng, K.; Xuan, Y.; Shi, X. M.; Gao, M. J.; Song, X. L.; Zhao, Y. D.; Chen, W. Graphene oxide coating core-shell silver sulfide@mesoporous silica for active targeted dual-mode imaging and chemo-photothermal synergistic therapy against tumors. J Mater Chem B 2018, 6, 4808-4820.http://dx.doi.org/10.1039/c8tb00940f
Durgadas, C. V.; Sreenivasan, K.; Sharma, C. P. Bright blue emitting CuSe/ZnS/silica core/shell/shell quantum dots and their biocompatibility. Biomaterials 2012, 33, 6420-6429.https://doi.org/10.1016/j.biomaterials.2012.05.051
Ma, B.; Wang, S.; Liu, F.; Zhang, S.; Duan, J.; Li, Z.; Kong, Y.; Sang, Y.; Liu, H.; Bu, W.; Li, L. Self-Assembled Copper-Amino Acid Nanoparticles for in Situ Glutathione "AND" H2O2 Sequentially Triggered Chemodynamic Therapy. J. Am. Chem. Soc. 2019, 141, 849-857.https://doi.org/10.1021/jacs.8b08714
Li, L.; Guan, Y.; Liu, H.; Hao, N.; Liu, T.; Meng, X.; Fu, C.; Li, Y.; Qu, Q.; Zhang, Y.; Ji, S.; Chen, L.; Chen, D.; Tang, F. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano 2011, 5, 7462-70.https://doi.org/10.1021/nn202399w
Zhang, Y.; Zhao, N.; Qin, Y.; Wu, F.; Xu, Z.; Lan, T.; Cheng, Z.; Zhao, P.; Liu, H. Affibody-functionalized Ag2S quantum dots for photoacoustic imaging of epidermal growth factor receptor overexpressed tumors. Nanoscale 2018, 10, 16581-16590.http://pubs.rsc.org/en/content/articlepdf/2018/NR/C8NR02556H
Meng, Z.; Wei, F.; Ma, W.; Yu, N.; Wei, P.; Wang, Z.; Tang, Y.; Chen, Z.; Wang, H.; Zhu, M. Design and Synthesis of “All-in-One” Multifunctional FeS2Nanoparticles for Magnetic Resonance and Near-Infrared Imaging Guided Photothermal Therapy of Tumors. Advanced Functional Materials 2016, 26, 8231-8242.https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201603776
Zhang, Y.; Zhang, Y.; Hong, G.; He, W.; Zhou, K.; Yang, K.; Li, F.; Chen, G.; Liu, Z.; Dai, H.; Wang, Q. Biodistribution, pharmacokinetics and toxicology of Ag2S near-infrared quantum dots in mice. Biomaterials 2013, 34, 3639-46.https://doi.org/10.1016/j.biomaterials.2013.01.089
Qu, A.; Xu, L.; Sun, M.; Liu, L.; Kuang, H.; Xu, C. Photoactive Hybrid AuNR-Pt@Ag2S Core-Satellite Nanostructures for Near-Infrared Quantitive Cell Imaging. Advanced Functional Materials 2017, 27.https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.201703408
Yang, T.; Tang, Y.; Liu, L.; Lv, X.; Wang, Q.; Ke, H.; Deng, Y.; Yang, H.; Yang, X.; Liu, G.; Zhao, Y.; Chen, H. Size-Dependent Ag2S Nanodots for Second Near-Infrared Fluorescence/Photoacoustics Imaging and Simultaneous Photothermal Therapy. ACS Nano 2017, 11, 1848-1857.https://doi.org/10.1021/acsnano.6b07866
Wang, G.; Liu, J.; Zhu, L.; Ma, X.; Wang, X.; Yang, X.; Guo, Y.; Yang, L.; Lu, J. Self-Destruction of Cancer Induced by Ag2 S Amorphous Nanodots. Small 2019, 15, e1902945.https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201902945
Liu, T.; Chao, Y.; Gao, M.; Liang, C.; Chen, Q.; Song, G.; Cheng, L.; Liu, Z. Ultra-small MoS2 nanodots with rapid body clearance for photothermal cancer therapy. Nano Research 2016, 9, 3003-3017.https://doi.org/10.1007/s12274-016-1183-x
Meng, X.; Liu, Z.; Cao, Y.; Dai, W.; Zhang, K.; Dong, H.; Feng, X.; Zhang, X. Fabricating Aptamer-Conjugated PEGylated-MoS2/Cu1.8S Theranostic Nanoplatform for Multiplexed Imaging Diagnosis and Chemo-Photothermal Therapy of Cancer. Advanced Functional Materials 2017, 27. http://onlinelibrary.wiley.com/wol1/doi/10.1002/adfm.201605592
Wang, S.; Chen, Y.; Li, X.; Gao, W.; Zhang, L.; Liu, J.; Zheng, Y.; Chen, H.; Shi, J. Injectable 2D MoS2 -Integrated Drug Delivering Implant for Highly Efficient NIR-Triggered Synergistic Tumor Hyperthermia. Adv Mater 2015, 27, 7117-22.http://onlinelibrary.wiley.com/wol1/doi/10.1002/adma.201503869
Chang, M.; Wang, M.; Wang, M.; Shu, M.; Ding, B.; Li, C.; Pang, M.; Cui, S.; Hou, Z.; Lin, J. A Multifunctional Cascade Bioreactor Based on Hollow‐Structured Cu2MoS4 for Synergetic Cancer Chemo‐Dynamic Therapy/Starvation Therapy /Phototherapy / Immunotherapy with Remarkably Enhanced Efficacy. Adv. Mater. 2019, 31.https://onlinelibrary.wiley.com/doi/pdf/10.1002/adma.201905271
Goel, S.; Ferreira, C. A.; Chen, F.; Ellison, P. A.; Siamof, C. M.; Barnhart, T. E.; Cai, W. Activatable Hybrid Nanotheranostics for Tetramodal Imaging and Synergistic Photothermal/Photodynamic Therapy. Adv Mater 2018, 30.https://doi.org/10.1002/adma.201704367
Gu, X.; Qiu, Y.; Lin, M.; Cui, K.; Chen, G.; Chen, Y.; Fan, C.; Zhang, Y.; Xu, L.; Chen, H.; Wan, J. B.; Lu, W.; Xiao, Z. CuS Nanoparticles as a Photodynamic Nanoswitch for Abrogating Bypass Signaling To Overcome Gefitinib Resistance. Nano Lett 2019, 19, 3344-3352.https://doi.org/10.1021/acs.nanolett.9b01065
Wu, Z.-C.; Li, W.-P.; Luo, C.-H.; Su, C.-H.; Yeh, C.-S. Rattle-Type Fe3O4@CuS Developed to Conduct Magnetically Guided Photoinduced Hyperthermia at First and Second NIR Biological Windows. Advanced Functional Materials 2015, 25, 6527-6537.http://onlinelibrary.wiley.com/wol1/doi/10.1002/adfm.201503015
Liang, S.; Deng, X.; Chang, Y.; Sun, C.; Shao, S.; Xie, Z.; Xiao, X.; Ma, P.; Zhang, H.; Cheng, Z.; Lin, J. Intelligent Hollow Pt-CuS Janus Architecture for Synergistic Catalysis-Enhanced Sonodynamic and Photothermal Cancer Therapy. Nano Lett 2019, 19, 4134-4145. https://doi.org/10.1021/acs.nanolett.9b01595
Hu, R.; Fang, Y.; Huo, M.; Yao, H.; Wang, C.; Chen, Y.; Wu, R. Ultrasmall Cu2-xS nanodots as photothermal-enhanced Fenton nanocatalysts for synergistic tumor therapy at NIR-II biowindow. Biomaterials 2019, 206, 101-114.https://doi.org/10.1016/j.biomaterials.2019.03.014
Liu, Y.; Zhen, W.; Wang, Y.; Liu, J.; Jin, L.; Zhang, T.; Zhang, S.; Zhao, Y.; Yin, N.; Niu, R.; Song, S.; Zhang, L.; Zhang, H. Double Switch Biodegradable Porous Hollow Trinickel Monophosphide Nanospheres for Multimodal Imaging Guided Photothermal Therapy. Nano Lett 2019, 19, 5093-5101.https://doi.org/10.1021/acs.nanolett.9b01370
Qin, M. Y.; Yang, X. Q.; Wang, K.; Zhang, X. S.; Song, J. T.; Yao, M. H.; Yan, D. M.; Liu, B.; Zhao, Y. D. In vivo cancer targeting and fluorescence-CT dual-mode imaging with nanoprobes based on silver sulfide quantum dots and iodinated oil. Nanoscale 2015, 7, 19484-92.https://doi.org/10.1039/c5nr05620a
Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X.; Feng, L.; Sun, B.; Liu, Z. Drug delivery with PEGylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv Mater 2014, 26, 3433-40.https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201305256
Chen, J.; Zhao, X.; Tan, S. J.; Xu, H.; Wu, B.; Liu, B.; Fu, D.; Fu, W.; Geng, D.; Liu, Y.; Liu, W.; Tang, W.; Li, L.; Zhou, W.; Sum, T. C.; Loh, K. P. Chemical Vapor Deposition of Large-Size Monolayer MoSe2 Crystals on Molten Glass. J Am Chem Soc 2017, 139, 1073-1076.https://doi.org/10.1021/jacs.6b12156
Wu, S.; Liu, X.; Ren, J.; Qu, X. Glutathione Depletion in a Benign Manner by MoS2 -Based Nanoflowers for Enhanced Hypoxia-Irrelevant Free-Radical-Based Cancer Therapy. Small 2019, 15, e1904870.https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.201904870
Tan, L.; Wang, S.; Xu, K.; Liu, T.; Liang, P.; Niu, M.; Fu, C.; Shao, H.; Yu, J.; Ma, T.; Ren, X.; Li, H.; Dou, J.; Ren, J.; Meng, X. Layered MoS2 Hollow Spheres for Highly-Efficient Photothermal Therapy of Rabbit Liver Orthotopic Transplantation Tumors. Small 2016, 12, 2046-55. http://onlinelibrary.wiley.com/wol1/doi/10.1002/smll.201600191
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-9.https://doi.org/10.1126/science.1102896
Xing, T.; Mateti, S.; Li, L. H.; Ma, F.; Du, A.; Gogotsi, Y.; Chen, Y. Gas Protection of Two-Dimensional Nanomaterials from High-Energy Impacts. Sci Rep 2016, 6, 35532.https://www.nature.com/articles/srep35532
Coleman, J. N.; Lotya, M.; O'Neill, A.; Bergin, S. D.; King, P. J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R. J.; Shvets, I. V.; Arora, S. K.; Stanton, G.; Kim, H. Y.; Lee, K.; Kim, G. T.; Duesberg, G. S.; Hallam, T.; Boland, J. J.; Wang, J. J.; Donegan, J. F.; Grunlan, J. C.; Moriarty, G.; Shmeliov, A.; Nicholls, R. J.; Perkins, J. M.; Grieveson, E. M.; Theuwissen, K.; McComb, D. W.; Nellist, P. D.; Nicolosi, V. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 2011, 331, 568-71.https://doi.org/10.1126/science.1194975
Yin, W.; Yan, L.; Yu, J.; Tian, G.; Zhou, L.; Zheng, X.; Zhang, X.; Yong, Y.; Li, J.; Gu, Z.; Zhao, Y. High-throughput synthesis of single-layer MoS2 nanosheets as a near-infrared photothermal-triggered drug delivery for effective cancer therapy. ACS Nano 2014, 8, 6922-33.https://doi.org/10.1021/nn501647j
Lee, Y. H.; Zhang, X. Q.; Zhang, W.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T.; Chang, C. S.; Li, L. J.; Lin, T. W. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 2012, 24, 2320-5.https://doi.org/10.1016/j.matlet.2015.12.068
Cai, Z.; Shen, T.; Zhu, Q.; Feng, S.; Yu, Q.; Liu, J.; Tang, L.; Zhao, Y.; Wang, J.; Liu, B.; Cheng, H. M. Dual-Additive Assisted Chemical Vapor Deposition for the Growth of Mn-Doped 2D MoS2 with Tunable Electronic Properties. Small 2020, 16, e1903181.https://doi.org/10.1002/smll.201903181
Qian, X.; Shen, S.; Liu, T.; Cheng, L.; Liu, Z. Two-dimensional TiS(2) nanosheets for in vivo photoacoustic imaging and photothermal cancer therapy. Nanoscale 2015, 7, 6380-7.https://doi.org/10.1039/c5nr00893j
Wang, S.; Li, K.; Chen, Y.; Chen, H.; Ma, M.; Feng, J.; Zhao, Q.; Shi, J. Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. Biomaterials 2015, 39, 206-17.https://doi.org/10.1016/j.biomaterials.2014.11.009
Cheng Z, Al Zaki A, Hui JZ, et al. Multifunctional nanoparticles:cost versus benefit of adding targeting and imaging capabilities[J]. Science, 2012, 338( 6109) : 903-910.https://www.sciencedirect.com/science/article/pii/B9780128217122000049
Kim B,Rutka JT,Chan WC. Nanomedicine[J]. N Engl J Med, 2010 (363): 2 434-443.https://doi.org/10.1056/nejmra0912273
Allen TM, Cullis PR. Drug delivery systems: entering the mainstream [J]. Science, 2004, 303(5665): 1 818-822.https://doi.org/10.1126/science.1095833
Wilczewska AZ, Niemirowicz K,Markiewicz KH,et al.Nanoparticles as drug delivery systems [J]. Pharmacol Rep, 2012, 64(5): 1 020-037. https://doi.org/10.1016/s1734-1140(12)70901-5
Cabrales P, Han G, Roche C, et al. Sustained release nitric oxide from long-lived circulating nanoparticles [J]. Free Radic Biol Med, 2010, 49(4):530-538.https://doi.org/10.1016/j.freeradbiomed.2010.04.034
Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs [J]. Scientifica (Cairo), 2016, 2016:8525679. https://doi.org/10.1155/2016/8525679
Yongjun Q, Huanzhang S, Wenxia Z, et al. From changes in local RAAS to struc-tural remodeling of the left atrium:a beautiful cycle in atrial fibrillation[J]. Herz, 2015, 40(3):514-520.http://link.springer.com/content/pdf/10.1007/s00059-013-4032-7
Lu Z, Scherlag BJ, Lin J, et al. Autonomic mechanism for initiation of rapid firing from atria and pulmonary veins:evidence by ablation of ganglionated plexi[J]. Cardiovasc Res, 2009, 84(2):245-252.https://doi.org/10.1093/cvr/cvp194
Yu L, Scherlag BJ, Dormer K, et al. Autonomic denervation with magnetic nanop-articles[J]. Circulation, 2010, 122(25):2653-2659. https://www.ahajournals.org/doi/full/10.1161/CIRCULATIONAHA.110.940288
Madigan M, Atoui R. Therapeutic use of stem cells for myocardial infarction[J]. Bioengineering (Basel), 2018, 5(2):28. http://dx.doi.org/10.3390/bioengineering5020028
Zhu K, Li J, Wang Y, et al. Nanoparticles-assisted stem cell therapy for ischemic heart disease[J]. Stem Cells Int, 2016, 2016:1384658.https://doi.org/10.1155/2016/1384658
Binsalamah ZM, Paul A, Khan AA, et al. Intramyocardial sustained delivery of placental growth factor using nanoparticles as a vehicle for delivery in the rat in-farct model[J]. Int J Nanomedicine, 2011, 6:2667-2678. https://doi.org/10.2147/ijn.s25175
Nakano Y, Matoba T, Tokutome M, et al. Nanoparticle-mediated delivery of irbe-sartan induces cardioprotection from myocardial ischemia-reperfusion injury by antagonizing monocyte-mediated inflammation[J]. Sci Rep, 2016, 6:29601.https://doi.org/10.1038/srep29601
Galagudza M, Korolev D, Postnov V, et al. Passive targeting of ischemic-reper-fused myocardium with adenosine-loaded silica nanoparticles. Int J Nano-medicine, 2012, 7:1671-1678. https://doi.org/10.2147/IJN.S29511
Torchilin VP. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nat Rev Drug Discov, 2014, 13(11):813-827. https://doi.org/10.2147/ijn.s29511
Chaudhary MA, Guo LW, Shi X, et al. Periadventitial drug delivery for the pre-vention of intimal hyperplasia following open surgery[J]. J Control Release, 2016, 233:174-180.https://doi.org/10.1016/j.jconrel.2016.05.002
Amezcua R, Shirolkar A, Fraze C, et al. Nanomaterials for cardiac myocyte tissue engineering[J]. Nanomaterials(Basel), 2016, 6(7):133. https://doi.org/10.3390/nano6070133
Kim DH, Kim P, Song I, et al. Guided three-dimensional growth of functional car- diomyocytes on polyethylene glycol nanostructures[J]. Langmuir, 2006, 22(12):5419-5426.https://doi.org/10.1021/la060283u
Malki M, Fleischer S, Shapira A, et al. Gold nanorod-based engineered cardiac patch for suture-free engraftment by near IR[J]. Nano Lett, 2018, 18(7):4069-4073.https://doi.org/10.1021/acs.nanolett.7b04924
Singelyn J, DeQuach J, Seif-Naraghi S, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials, 2009, 30(29):5409-5416.https://doi.org/10.1016/j.biomaterials.2009.06.045
Hernandez MJ, Christman KL. Designing acellular injectable biomaterial thera-peutics for treating myocardial infarction and peripheral artery disease[J]. JACC Basic Transl Sci, 2017, 2(2):212-226. https://doi.org/10.1016/j.jacbts.2016.11.008
Evans B, Hocking K, Osgood M, et al. MK2 inhibitory peptide delivered in nan-opolyplexes prevents vascular graft intimal hyperplasia[J]. Sci Transl Med, 2015, 7(291):291ra295.https://doi.org/10.1126/scitranslmed.aaa4549
Li H, Chai S, Dai L, et al. Collagen external scaffolds mitigate intimal hyperplasia and improve remodeling of vein grafts in a rabbit arteriovenous graft model[J]. Biomed Res Int, 2017, 2017:7473437.https://doi.org/10.1155/2017/7473437
Robinson E, Kaushal S, Alaboson J, et al. Combinatorial release of dexametha-sone and amiodarone from a nano-structured parylene-C film to reduce perioper-ative inflammation and atrial fibrillation[J]. Nanoscale, 2016, 8(7):4267-4275.https://doi.org/10.1039/c5nr07456h
Burkhardt J, Natale A. New technologies in atrial fibrillation ablation[J]. Circu-lation, 2009, 120(15):1533-1541. https://doi.org/10.1161/circulationaha.109.858233
DaCosta A, Guichard J, Maillard N, et al. Substantial superiority of Niobe ES over NiobeⅡsystem in remote-controlled magnetic pulmonary vein isolation[J]. Int J Cardiol, 2017, 230:319-323.https://doi.org/10.1016/j.ijcard.2016.12.115
Qian P, DeSilva K, Kumar S, et al. Early and long-term outcomes after manual and remote magnetic navigation-guided catheter ablation for ventricular tachycar- dia[J]. Europace, 2018, 20(suppl 2):ii11-ii21.https://doi.org/10.1093/europace/euy057
Grodanz E. Robotic mitral valve repair[J]. J Cardiovasc Nurs, 2015, 30(4):325-331.https://doi.org/10.1097/imi.0000000000000438
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2023 Biomaterials and Biosensors