How Does Lncrna Regulation Impact Cancer Metastasis

Authors

  • Abreto Devit Mancheng Internal Medicine, Hopital du Mali, Bamako, Mali
  • Ugwemubwem Ossas Internal Medicine, Hopital du Mali, Bamako, Mali.

DOI:

https://doi.org/10.58567/ci01010002

Keywords:

Noncoding RNAs (ncRNAs); Long noncoding RNAs (lncRNAs); Cancer metastasis; Gene regulation

Abstract

Metastasis is the major cause of cancer-related mortality. Metastasis is a process through which cancer spreads from its initial location to other sections of the body. Cancer cells' epithelial-mesenchymal transition (EMT), anoikis resistance, cell migration, and angiogenesis are all well-known steps in this process. Investigating the molecular processes that govern cancer metastatic progression may lead to more effective diagnostic and treatment strategies. Long non-coding RNAs (lncRNAs) have recently discovered to have a vital more than 200 nucleotides. A rising body of research indicates that lncRNAs have a role in a wide range of biological processes and diseases, including cancer. The usage of LncRNA in cancer metastasis has been widely researched. However, according to current studies, lncRNA is mostly associated with the EMT process. This review focuses on the processes behind lncRNA involvement in cancer metastasis.

References

Gupta G, P, Massague J. Cancer metastasis: Building a framework 2006. Cell 127:679-695. doi: 10.1016/j.cell.2006.11.001

Shi Z, Wei Q, She J. MicroRNAs in gastric cancer metastasis. Crit. Rev. Eukaryot. Gene Expr. 2014; 24:39-53. doi:10.1615/CritRevEukaryotGeneExpr.2014007896

Shen X, H Qi, P Du. Long non-coding RNAs in cancer invasion and metastasis. Mod. Pathol. 2015; 28(1):4-13. doi:10.1038/modpathol.2014.75

Zhang Y, Yang P, Wang X F. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol. 2014; 24:153-160. doi: 10.1016/j.tcb.2013.09.007

Bouyssou J M , Manier S et al. Regulation of microRNAs in cancer metastasis. Biochim. Biophys. Acta 2014; 1845:255-265. doi:10.1016/j.bbcan.2014.02.002

Mercer, T R, Mattick, J S. Structure and function of long noncoding RNAs in epigenetic regulation. Nat. Struct. Mol. Biol. 20:300-307; 2013. doi:10.1038/nsmb.2480

Wang KC, Chang H. Molecular mechanisms of long noncoding RNAs. Mol. Cell 2011; 43:904-914. doi:10.1016/j.molcel.2011.08.018

Loewer S, Cabili MN, Guttman M, et al. Large intergenic non-coding RNARoR modulates reprogramming of human induced pluripotent stem cells. Nat. Genet. 2010; 42:1113-1117. doi:10.1038/ng.710

Gupta, RA, Shah N, Wang KC, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 2010; 464:1071-1076 .doi:10.1038/nature08975

Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2 locus maintains adult haematopoietic stem cell quiescence. Nature 2013; 500:345-349. doi:10.1038/nature12303

Yoon JH, Abdelmohsen K, Kim J, et al. Function of long non-coding RNA HOTAIR in protein ubiquitination. Nat. Commun. 2013; 4:2939 .doi:10.1038/ncomms3939

Xue Y, Gu D, Ma G, et al. Genetic variants in lncRNA HOTAIR are associated with risk of colorectal cancer. 2015Mutagenesis 30(2):303-310; doi:10.1093/mutage/geu076

Kim K, Jutooru I, Chadalapaka G, et al. HOTAIR is a negative prognostic factor and exhibits pro-oncogenic activity in pancreatic cancer. Oncogene 2013; 32:1616-1625; doi:10.1038/onc.2012.193

Geng YJ, Xie SL, et al. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression. J. Int. Med. Res 2011; 39:2119-2128 .doi:10.1177/147323001103900608

Niinuma T, Suzuki H, Nojima M, et al. Upregulation of miR-196a and HOTAIR drive malignant character in gastrointestinal stromal tumors. Cancer Res. 2012; 72: 1126-1136;. doi:10.1158/0008-5472.CAN-11-1803

Hibi K, Nakamura H, Hirai A, et al. Loss of H19 imprinting in esophageal cancer. Cancer Res. 56:480-482; 1996.

Kondo M, Takahashi T. Altered genomic imprinting in the IGF2 and H19 genes in human lung cancer. Nihon Rinsho. 1996; 54:492-496.

Lottin S, Adriaenssens E, Dupressoir, et al. Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast cancer cells. Carcinogenesis 2002; 23: 1885-1895.doi:10.1093/carcin/23.11.1885

Kanduri C, Kanduri M, Liu L, et al. The kinetics of deregulation of expression by de novo methylation of the h19 imprinting control region in cancer cells. Cancer Res. 2002; 62:4545-4548.

Byun HM, Wong HL, Birnstein E, et al. IGF2 and H19 loss of imprinting in bladder cancer. Cancer Res. 2007; 67:10753- 10758. doi:10.1158/0008-5472.CAN-07-0329

Matouk IJ, Raveh E, Abu-lail R. et al. An Oncofetal H19 RNA promotes tumor metastasis. Biochim. Biophys. Acta 2014;1843:1414- 1426. doi:10.1016/j.bbamcr.2014.03.023

Sun M. Xia R, Jin, F, et al. Downregulated long noncoding RNA MEG3 is associated with poor prognosis and promotes cell proliferation in gastric cancer. Tumour Biol. 35:1065-1073; 2014. doi:10.1007/s13277-013-1142-z

McMurray EN, Schmidt JV. Identification of imprinting regulators at the Meg3 differentially methylated region. Genomics 2012; 100:184-194. doi:10.1016/j.ygeno.2012.06.001

Anwar SL, Krech T, Hasemeier, et al. Loss of imprinting and allelic switching at the DLK1-MEG3 locus in human hepatocellular carcinoma. PLoS One 2012; 7:e49462. doi:10.1371/journal.pone.0049462

Benetatos L, Hatzimichael E, Dasoula A, et al. Methylation analysis of the MEG3 and SNRPN imprinted genes in acute myeloid leukemia and myelodysplastic syndromes. Leuk. Res. 2010; 34:148-153. doi:10.1016/j.leukres.2009.06.019

Augoff K,McCue B, Plow EF, et al. MiR-31 and its host gene lncRNA LOC554202 are regulated by promoter hypermethylation in triple-negative breast cancer. Mol. Cancer 2012;11:5.doi:10.1186/1476-4598-11-5

Shi Y, Lu J, Zhou J, et al. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells. Biochem. Biophys. Res. Commun. 2014; 446:448-453.doi:10.1016/j.bbrc.2014.02.144

Pandey GK, Mitra S, Subhash S, et al. The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 2014; 26:722-737. doi:10.1016/j.ccell.2014.09.014

Ji P,Diederichs S, Wang W, Boing S, et al. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage nonsmall cell lung cancer. Oncogene 2003; 22:8031-8041. doi:10.1038/sj.onc.1206928

Ma KX, Wang HJ, et al. Long noncoding RNA MALAT1 associates with the malignant status and poor prognosis in glioma. Tumour Biol. 36(5):3355 doi:10.1007/s13277-014-2969-7

Zheng HT, Shi DB, Wang YW, et al. High expression of lncRNA MALAT1 suggests a biomarker of poor prognosis in colorectal cancer. Int. J. Clin. Exp. Pathol. 7:3174-3181.

Liu JH, Chen G, Dang YW, et al. Expression and prognostic significance of lncRNA MALAT1 in pancreatic cancer tissues. Asian Pac. J. Cancer Prev. 2014;15:2971-2977. doi:10.7314/APJCP.2014.15.7.2971

Ren S,Liu Y,Xu W, et al. Long noncoding RNA MALAT-1 is a new potential therapeutic target for castration resistant prostate cancer. J. Urol. 2013; 190:2278-2287. doi:10.1016/j.juro.2013.07.001

Ying L, Chen Q, Wang Y, et al. MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol. Biosyst. 2012; 8:2289-2294. doi:10.1039/c2mb25070e

Xu C, Yang M, Tian J, et al. A long non-coding RNA and its important 3¢ end functional motif in colorectal cancer metastasis. Int. J. Oncol. 2011; 39:169-175.

Jiang Y, Li Y, Fang S, et al. Role of MALAT1 correlates with HPV in cervical cancer. Oncol. Lett. 2014; 7:2135-2141. doi:10.3892/ol.2014.1996

Fan Y, Shen B, Tan M, et al. TGF-beta-induced upregulation of malat1 promotes bladder cancer metastasis by associating with suz12. Clin. Cancer Res. 2014; 20:1531-1541. doi:10.1158/1078-0432.CCR-13-1455

Shen L, Chen L, Wang Y, et al. Long noncoding RNA MALAT1 promotes brain metastasis by inducing epithelial-mesenchymal transition in lung cancer. J. Neurooncol. 2015; 121(1):101-108. doi:10.1007/s11060-014-1613-0

Miyagawa R, Tano K,Mizuno R, et al. Identification of cis- and transacting factors involved in the localization of MALAT-1 noncoding RNA to nuclear speckles. RNA 2012; 18:738-751. doi:10.1261/rna.028639.111

Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell 2010; 39:925-938. doi:10.1016/j.molcel.2010.08.011

Wan Y, Chang HY. HOTAIR: Flight of noncoding RNAs in cancer metastasis. Cell Cycle 2010; 9:3391-3392. doi:10.4161/cc.9.17.13122

Yang Z, Zhou L, Wu LM, et al. Overexpression of long non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients following liver transplantation. Ann. Surg. Oncol. 2011; 18:1243-1250. doi:10.1245/s10434-011-1581-y

Liu XH, Liu ZL, et al. The long non-coding RNA HOTAIR indicates a poor prognosis and promotes metastasis in non-small cell lung cancer. BMC Cancer 2013; 13:464. doi:10.1186/1471-2407-13-464

Lv XB, Lian GY, Wang HR, et al. Long noncoding RNA HOTAIR is a prognostic marker for esophageal squamous cell carcinoma progression and survival. PLoS One 2013; 8:e63516. doi:10.1371/journal.pone.0063516

He X, Bao W, Li X, et al. The long non-coding RNA HOTAIR is upregulated in endometrial carcinoma and correlates with poor prognosis. Int. J. Mol. Med. 2014; 33:325-332 doi:10.3892/ijmm.2013.1570

Huang L, Liao LM, Liu AW, et al. Overexpression of long noncoding RNA HOTAIR predicts a poor prognosis in patients with cervical cancer. Arch. Gynecol. Obstet. 2014; 290:717- 723. doi:10.1007/s00404-014-3236-2

Xu ZY,Yu QM, et al. Knockdown of long non-coding RNA HOTAIR suppresses tumor invasion and reverses epithelial-mesenchymal transition in gastric cancer. Int. J. Biol. 2013; Sci. 9:587-597. doi:10.7150/ijbs.6339

Wu L,Murat P, Matak-Vinkovic D. Between long noncoding RNA HOTAIR and PRC2 proteins. Biochmistry 52:9519-9527; 2013. doi:10.1021/bi401085h

Li L, Liu B, Wapinski OL, et al. Targeted disruption of Hotair leads to homeotic transformation and gene derepression. Cell Rep. 5:3-12; 2013. doi:10.1016/j.celrep.2013.09.003

Brunkow ME, Tilghman SM. Ectopic expression of the H19 gene in mice causes prenatal lethality. Genes Dev. 5:1092-1101; 1991. doi:10.1101/gad.5.6.1092

Bartolomei MS, Zemel S, Tilghman SM. Parental imprinting of the mouse H19 gene. Nature 351:153-155; 1991. doi:10.1038/351153a0

Verhaegh GW, Verkleij L, et al. Polymorphisms in the H19 gene and the risk of bladder cancer. Eur. Urol. 54:1118-1126; 2008. doi:10.1016/j.eururo.2008.01.060

Medrzycki M, Zhang Y, Zhang W, et al. Histone h1.3 suppresses h19 noncoding RNA expression and cell growth of ovarian cancer cells. Cancer Res. 74:6463-6473; 2014. doi:10.1158/0008-5472.CAN-13-2922

Zhang EB, Han L, Yin DD, et al. C-Myc-induced, long, noncoding H19 affects cell proliferation and predicts a poor prognosis in patients with gastric cancer. Med. Oncol. 31:914; 2014. doi:10.1007/s12032-014-0914-7

Murphy SK, Huang Z, Wen Y, et al. Frequent IGF2/H19 domain epigenetic alterations and elevated IGF2 expression in epithelial ovarian cancer. Mol. Cancer Res. 4:283-292; 2006. doi:10.1158/1541-7786.MCR-05-0138

Berteaux N, Lottin S, Monte D, et al. H19 mRNA-like noncoding RNA promotes breast cancer cell proliferation through positive control by E2F1. J. Biol. Chem. 280:29625-29636; 2005. doi:10.1074/jbc.M504033200

Chen CL, Ip SM, Cheng D, et al. Imprinting of the IGF-II and H19 genes in epithelial ovarian cancer. Clin. Cancer Res. 6:474-479; 2000.

Kondo M, Suzuki H, et al. Frequent loss of imprinting of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene 10:1193-1198; 1995.

Ma C, Nong K, Zhu H, et al. H19 promotes pancreatic cancer metastasis by derepressing let-7's suppression on its target HMGA2- mediated EMT. Tumour Biol. 35:9163-9169; 2014. doi:10.1007/s13277-014-2185-5

Tsang WP, Ng EK, et al. H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 2010; 31:350-358. doi:10.1093/carcin/bgp181

Shi Y, Wang Y, Luan W, et al. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. 2014; PLoS One 9:e86295. doi:10.1371/journal.pone.0086295

Zhu M,Chen Q, Liu X, et al. lncRNA H19/ miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J. 2014; 281:3766-3775. doi:10.1111/febs.12902

Lv J, Ma L, Chen XL, et al. Downregulation of LncRNAH19 and MiR-675 promotes migration and invasion of human hepatocellular carcinoma cells through AKT/GSK-3beta/Cdc25A signaling pathway. J. Huazhong Univ. Sci. Technolog. Med. Sci. 2014; 34:363-369. doi:10.1007/s11596-014-1284-2

Ariel I, Lustig O, Schneider T, et al. The imprinted H19 gene as a tumor marker in bladder carcinoma. Urology 1995; 45:335-338. doi:10.1016/0090-4295(95)80030-1

Atala A, Re. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. J. Urol. 2013; 190:2306. doi:10.1016/j.juro.2013.08.057

Luo M, Li Z, Wang W, et al. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett. 2013;333:213-221. doi:10.1016/j.canlet.2013.01.033

Zhang L, Yang F, Yuan JH et al. Epigenetic activation of the MiR-200 family contributes to H19-mediated metastasis suppression in hepatocellular carcinoma. Carcinogenesis 34:577-586; 2013. doi:10.1093/carcin/bgs381

Bi HS, Yang XY, Yuan JH, et al. H19 inhibits RNA polymerase II-mediated transcription by disrupting the hnRNP U-actin complex. Biochim. Biophys. Acta 1830:4899-4906 2013. doi:10.1016/j.bbagen.2013.06.026

Coccia EM, Cicala C, Charlesworth, et al. Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentiation, and development. Mol. Cell Biol. 1992; 12:3514-3521. doi:10.1128/MCB.12.8.3514

Nakamura Y, Takahashi N, Kakegawa E, et al. The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a result of t(1; 3)(q25; q27) in a patient with B-cell lymphoma. Cancer Genet. Cytogenet. 182:144- 149; 2008. doi:10.1016/j.cancergencyto.2008.01.013

Cao S, Liu W, Li F, et al. Decreased expression of lncRNA GAS5 predicts a poor prognosis in cervical cancer. Int. J. Clin. Exp. Pathol. 2014; 7:6776-6783.

Sun M, Jin FY, Xia R, et al. Decreased expression of long noncoding RNA GAS5 indicates a poor prognosis and promotes cell proliferation in gastric cancer. BMC Cancer 2014; 14:319. doi:10.1186/1471-2407-14-319

Tu ZQ, Li RJ, et al. Down-regulation of long non-coding RNA GAS5 is associated with the prognosis of hepatocellular carcinoma. Int. J. Clin. Exp. Pathol. 2014; 7:4303-4309.

Yin D, He X, Zhang E, et al. Long noncoding RNA GAS5 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Med. Oncol. 2014; 31:253. doi:10.1007/s12032-014-0253-8

Krell J, Frampton AE, Mirnezami R, et al. Growth arrest-specific transcript 5 associated snoRNA levels are related to p53 expression and DNA.

Rosa AL, Wu YQ, Kwabi-Addo, et al. specific methylation of a functional CTCF binding site upstream of MEG3 in the human imprinted domain of 14q32. Chromosome Res. 2005; 13:809-818. doi:10.1007/s10577-005-1015-4

Zhang X, Zhou Y, Mehta KR, et al. A pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J. Clin. Endocrinol. Metab. 2003; 88:5119-5126. doi:10.1210/jc.2003-030222

Zhao J, Dahle D, Zhou Y, et al. Hypermethylation of the promoter region is associated with the loss of MEG3 gene expression in human pituitary tumors. J. Clin. Endocrinol. Metab. 2005; 90:2179-2186. doi:10.1210/jc.2004-1848

Benetatos L, Vartholomatos G, Hatzimichael E. MEG3 imprinted gene contribution in tumorigenesis. Int. J. Cancer 2011: 129:773-779. doi:10.1002/ijc.26052

Braconi C, Kogure T, Valeri N, et al. microRNA-29 can regulate expression of the long non-coding RNA gene MEG3 in hepatocellular cancer. Oncogene 2011; 30:4750-4756. doi:10.1038/onc.2011.193

Yan J, Guo X, Xia J, et al. Regulates MEG3 in gastric cancer by targeting DNA methyltransferase 1. Med. Oncol. 2014; 31:879. doi:10.1007/s12032-014-0879-6

Li Z, Li C, Liu C, et al. Expression of the long non-coding RNAs MEG3, HOTAIR, and MALAT-1 in non-functioning pituitary adenomas and their relationship to tumor behavior. Pituitary 2015; 18(1):42-47. doi:10.1007/s11102-014-0554-0

Jia LF, Wei SB, Gan YH, et al. Expression, regulation and roles of miR-26a and MEG3 in tongue squamous cell carcinoma. Int. J. Cancer 135:2282-2014; 2293. doi:10.1002/ijc.28667

Lu KH, Li W, Liu X, et al. Long non-coding RNA MEG3 inhibits NSCLC cells proliferation and induces apoptosis by affecting p53 expression. BMC Cancer 2013; 13:461. doi:10.1186/1471-2407-13-461

Yin DD, Liu ZJ, Zhang E, et al. Decreased expression of long noncoding RNA MEG3 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer. Tumour Biol. 2015; 36(6):4851-4859. doi:10.1007/s13277-015-3139-2

Zhou Y, Zhong Y,Wang Y, et al. Activation of p53 by MEG3 non-coding RNA. J. Biol. Chem. 2007; 282:24731-24742.

Panzitt K, Tschernatsch M. et al. Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132:330-342; 2007. doi:10.1053/j.gastro.2006.08.026

Matouk IJ, Abbasi I, Hochberg A, et al. Highly upregulated in liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur. J. Gastroenterol. Hepatol. 2009; 21:688-692. doi:10.1097/MEG.0b013e328306a3a2

Hammerle M,Gutschner T, Uckelmann H, et al. Posttranscriptional destabilization of the liver-specific long noncoding RNA HULC by the IGF2 mRNA-binding protein 1 (IGF2BP1). Hepatology2013; 58:1703-1712. doi:10.1002/hep.26537

Wang J, Liu X, Wu H, et al. CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer. Nucleic Acids Res. 2010; 38:5366-5383. doi:10.1093/nar/gkq285

Zhao Y, Guo Q, et al. Role of long non-coding RNA HULC in cell proliferation, apoptosis and tumor metastasis of gastric cancer: A clinical and in vitro investigation. Oncol. Rep. 2014; 31:358-364. doi:10.3892/or.2013.2850

Wang Y, Solt LA, et al. Regulation of p53 stability and apoptosis by a ROR agonist. PLoS One 2012; 7:e34921. doi:10.1371/journal.pone.0034921

Zhang A, Zhou N, Huang J, Liu Q, et al. Human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res. 2013; 23:340-350. doi:10.1038/cr.2012.164

Wang Y, Xu Z, Jiang J, et al. Endogenous miRNA sponge lincRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev. Cell. 2013; 25:69-80. doi:10.1016/j.devcel.2013.03.002

Hou P, Zhao Y, Li Z, et al. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Dis. 2014; 5:e1287. doi:10.1038/cddis.2014.249

Eades G, Wolfson B, et al. lincRNA-RoR and miR-145 regulate invasion in triplenegative breast cancer via targeting ARF6. Mol. Cancer Res. 2015; 13(2):330-338. doi:10.1158/1541-7786.MCR-14-0251

Yuan JH, Yang F, Wang F, et al. A long noncoding RNA activated by TGFbeta promotes the invasion-metastasis cascade in hepatocellular carcinoma. Cancer Cell 2014; 25:666-681. doi:10.1016/j.ccr.2014.03.010

Li W, Kang Y. A new Lnc in metastasis: Long noncoding RNA mediates the prometastatic functions of TGFbeta. Cancer Cell 2014; 25:557-559. doi:10.1016/j.ccr.2014.04.014

Poliseno L, Salmena L, Zhang J, et al. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010; 465:1033-1038. doi:10.1038/nature09144

Yu G, Yao W, Gumireddy K, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear cell renal cell carcinoma progression. Mol. Cancer Ther. 2014; 13(12):3086-3097. doi:10.1158/1535-7163.MCT-14-0245

Poliseno L, Haimovic A, et al. Deletion of PTENP1 pseudogene in human melanoma. J. Invest. Dermatol. 2011; 131:2497- 2500. doi:10.1038/jid.2011.232

Yu G, Yao W, Gumireddy K, et al. Pseudogene PTENP1 functions as a competing endogenous RNA to suppress clear-cell renal cell carcinoma progression. Mol. Cancer Ther. 2014; 13:3086-3097. doi:10.1158/1535-7163.MCT-14-0245

Meng J, Li P, Zhang Q, et al. A four-long non-coding RNA signature in predicting breast cancer survival. J. Exp. Clin. Cancer Res. 2014;33:84. doi:10.1186/s13046-014-0084-7

Grote P, Wittler L, Hendrix D, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev. Cell 2013; 24:206-214. doi:10.1016/j.devcel.2012.12.012

Xu TP, Huang MD, et al. Decreased expression of the long noncoding RNA FENDRR is associated with poor prognosis in gastric cancer and FENDRR regulates gastric cancer cell metastasis by affecting fibronectin1 expression. J. Hematol. Oncol. 2014; 7:63. doi:10.1186/s13045-014-0063-7

LaFlamme B, GAPLINC and gastric cancer. Nat. Genet. 2014; 46:1159. doi:10.1038/ng.3136

Hu Y, Wang J, Qian J, et al. Long noncoding RNA GAPLINC regulates CD44-dependent cell invasiveness and associates with poor prognosis of gastric cancer. Cancer Res. 2014; 74(23):6890-6902. doi:10.1158/0008-5472.CAN-14-0686

Sun NX, Ye C, Zhao Q, et al. Long noncoding RNA-EBIC promotes tumor cell invasion by binding to EZH2 and repressing E-cadherin in cervical cancer. PLoS One 2014; 9:e100340. doi:10.1371/journal.pone.0100340

Johnson SM, Grosshans H, et al. Labourier, E.; Reinert, K. L.; Brown, D.; Slack, F. J. RAS is regulated by the let-7 microRNA family. Cell 2005; 120:635-647. doi:10.1016/j.cell.2005.01.014

Gao Y, Wu F, Zhou J, et al. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res. 2014; 42(22):13799-13811. doi:10.1093/nar/gku1160

Kallen AN, Zhou XB, Xu J, et al. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol. Cell 2013; 52:101-112. doi:10.1016/j.molcel.2013.08.027

Shen L, Wan Z, Ma Y, et al. The clinical utility of microRNA-21 as novel biomarker for diagnosing human cancers. Tumour Biol. 2015; 36(3):1993-2005. doi:10.1007/s13277-014-2806-z

Zhang Z, Zhu Z, Watabe K, et al. Negative regulation of lncRNA GAS5 by miR-21. Cell Death Differ. 2013; 20:1558-1568. doi:10.1038/cdd.2013.110

Leucci E, Patella F, Waage J, et al. MicroRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus. Sci. Rep. 2013; 3:2535. doi:10.1038/srep02535

Smits G, Mungall AJ, Griffiths-Jones S, et al. Conservation of the H19 noncoding RNA and H19-IGF2 imprinting mechanism in therians. Nat. Genet. 2008; 40:971-976. doi:10.1038/ng.168

Keniry A, Oxley D, Monnier P, et al. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol. 2012; 14:659-665. doi:10.1038/ncb2521

Li H, Yu B, Li J, et al. Overexpression of lncRNA H19 enhances carcinogenesis and metastasis of gastric cancer. Oncotarget 2014; 5:2318-2329. doi:10.18632/oncotarget.1913

Zhuang M, Gao W, et al. The long non-coding RNA H19-derived miR-675 modulates human gastric cancer cell proliferation by targeting tumor suppressor RUNX1. Biochem. Biophys. Res. Commun. 2014; 448:315- 322. doi:10.1016/j.bbrc.2013.12.126

Xi S, Yang M, Tao Y, et al. Cigarette smoke induces C/EBP-beta-mediated activation of miR-31 in normal human respiratory epithelia and lung cancer cells. PLoS One 2010; 5:e13764. doi:10.1371/journal.pone.0013764

Wang J, Tsouko E, Jonsson P, et al. miR-206 inhibits cell migration through direct targeting of the actin-binding protein Coronin 1C in triple-negative breast cancer. Mol. Oncol. 2014; 8:1690-1702. doi:10.1016/j.molonc.2014.07.006

Duan FT, Qian F, Fang K, et al. miR-133b, a muscle-specific microRNA, is a novel prognostic marker that participates in the progression of human colorectal cancer via regulation of CXCR4 expression. Mol. Cancer 2013;12:164. doi:10.1186/1476-4598-12-164

Liz J, Portela A, Soler M, et al. Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. Mol. Cell 2014; 55:138-147. doi:10.1016/j.molcel.2014.05.005

Cesana M, Cacchiarelli D, Legnini I, et al. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011; 147:358-369. doi:10.1016/j.cell.2011.09.028

Tinzl M, Marberger M, Horvath S, et al. DD3PCA3 RNA analysis in urine--A new perspective for detecting prostate cancer. Eur. Urol. 2004; 46:182-186. doi:10.1016/j.eururo.2004.06.004

Hessels D, Klein Gunnewiek JM, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 2003; 44:8-15; discussion 15-16. doi:10.1016/S0302-2838(03)00201-X

Jung M, Xu C, Spethmann J, et al. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur. Urol. 2003; 44:8-16. doi:10.1016/S0302-2838(03)00201-X

Costa FF, Non-coding RNAs and new opportunities for the private sector. Drug Discov. Today 2009; 14:446-452. doi:10.1016/j.drudis.2009.01.008

Hung T, Chang HY. Long noncoding RNA in genome regulation: Prospects and mechanisms. RNA Biol. 2010; 7:582- 585. doi:10.4161/rna.7.5.13216

Tsai MC, Spitale RC, Chang HY. Long intergenic noncoding RNAs: New links in cancer progression. Cancer Res. 2011; 71:3-7. doi:10.1158/0008-5472.CAN-10-2483

Morris KV. RNA-directed transcriptional gene silencing and activation in human cells. Oligonucleotides 2009; 19:299- 306. doi:10.1089/oli.2009.0212

Luo M, Li Z, Wang W, et al. Upregulated H19 contributes to bladder cancer cell proliferation by regulating ID2 expression. FEBS J. 2013; 280:1709-1716. doi:10.1111/febs.12185

Smaldone MC, Davies BJ. BC-819, A plasmid comprising the H19 gene regulatory sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr. Opin. Mol. Ther. 2010; 12:607-616.

Gofrit ON, Benjamin S, Halachmi S, et al. DNA based therapy with diphtheria toxin-A BC-819: a phase 2b marker lesion trial in patients with intermediate risk nonmuscle invasive bladder cancer. J. Urol. 2014;191:1697-1702. doi:10.1016/j.juro.2013.12.011

Amit D, Hochberg A. Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. J. Transl. Med. 2010; 8:134. doi:10.1186/1479-5876-8-134

Amit D, Tamir S, Birman T, et al. A Development of targeted therapy for bladder cancer mediated by a double promoter plasmid expressing diphtheria toxin under the control of IGF2-P3 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 2011; 4:91-102. doi:10.1186/1479-5876-8-134

Scaiewicz V, Sorin V, Fellig Y, et al. Use of H19 gene regulatory sequences in DNA-based therapy for pancreatic cancer. J. Oncol. 2010:178174. doi:10.1155/2010/178174

Mizrahi A, Czerniak A, Levy T, et al. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J. Transl. Med. 2009; 7:69. doi:10.1186/1479-5876-7-69

Amit D, Hochberg A. Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int. J. Clin. Exp. Med. 2012; 5:296-305.

Downloads

Published

2023-02-01

How to Cite

Mancheng, A. D. ., & Ossas , U. . (2023). How Does Lncrna Regulation Impact Cancer Metastasis. Cancer Insight, 1(1), 15–34. https://doi.org/10.58567/ci01010002

Issue

Section

Articles