Role of Natural Products in Combating Cancer

Authors

  • Camilla Barreto Geneva University, Switzerland
  • Alwjandra Jandus University of Lausanne, Switzerland

DOI:

https://doi.org/10.58567/ci01010003

Keywords:

Natural products, Immune reaction, Cancer network pharmacology, Immunomodulation, Immunogenic cell death, Herb medications

Abstract

Alternative bio actively chemicals may be found in natural goods and traditional herb medications, but only a few plant-information formulations have been rigorously studied and verified for their potential as medicinal therapies. The study of plant-derived elements' immunomodulation capabilities and their ability as provoke the immune system as combat various elemental disorders like cancer is, nonetheless, a promising area in current therapeutics information on plant-derived chemicals. This research showed how network pharmacology may be applied as define and validate natural individual elements or more complicated preparations as prospective cancer therapies information on their various aim capabilities in this research. We give a summary of the present state of understanding on network pharmacology, with a particular emphasis on various technical methods and their implications for cancer treatment.

References

Wang YJ, Fletcher R, Yu J, et al. Immunogenic effects of chemotherapy-induced tumor cell death. Genes. Dis. 2018;5(3): 194-203. doi: 10.1016/j.gendis.2018.05.003

Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat. Chem. Biol. 2018;4(11): 682-690. doi: 10.1038/nchembio.118

Gertsch J. Botanical drugs, synergy, and network pharmacology: Forth and back to intelligent mixtures. Planta. Med. 2011;77(11): 1086-1098. doi: 10.1055/s-0030-1270904

Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim. Biophys. Acta. 2013;1830(6): 3670-3695. doi: 10.1016/j.bbagen.2013.02.008

Danciu Corina SC, Antal Diana, Alexandra Popescu, et al. An Update on natural compounds and their modern formulations for the management of malignant melanoma. In: Badria FA, editor Natural Products and Cancer Drug Discovery. Intech.Open.2017; pp 42. doi: 10.5772/67647

Bhatt A. Phytopharmaceuticals: A new drug class regulated in India. Perspect. Clin. Res. 2016;7(2): 59-61. doi: 10.4103/2229- 3485.179435

Chinembiri TN, du Plessis LH, Gerber M, et al. Review of natural compounds for potential skin cancer treatment. Molecules 2014;19(8): 11679-11721. doi: 10.3390/molecules190811679

Candeias SM, Gaipl US. The immune system in cancer prevention, development and therapy. Anticancer Agents Med Chem 2016;16(1): 101-107. doi: 10.2174/1871520615666150824153523

Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget 2017;8(4): 7175-7180. doi: 10.18632/oncotarget.12739

Burnet FM. The concept of immunological surveillance. Prog Exp Tumor Res 1970;13: 1-27. doi: 10.1159/000386035

Dunn GP, Bruce AT, Ikeda H, et al. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 2002;3(11): 991-998. doi: 10.1038/ni1102-991

Kaplan DH, Shankaran V, Dighe AS, et al. Demonstration of an interferon gammadependent tumor surveillance system in immunocompetent mice. Proc. Natl. Acad. Sci. U. S. A. 1998;95(13): 7556-7561. doi: 10.1073/pnas.95.13.7556

Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001;410(6832): 1107-1111. doi: 10.1038/35074122

Galluzzi L, Aaronson SA, Abrams J, et al. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell. Death. Differ. 2009;16(8): 1093-1107. doi: 10.1038/cdd.2009.44

Ruggero D. The role of Myc-induced protein synthesis in cancer. Cancer. Res. 2009;69(23): 8839-8843. doi: 10.1158/0008-5472.CAN09-1970

Green DR, Ferguson T, Zitvogel L, et al. Immunogenic and tolerogenic cell death. Nat. Rev. Immunol. 2009;9(5): 353-363. doi: 10.1038/nri2545

Zitvogel L, Kepp O, Kroemer G. Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat. Rev. Clin. Oncol. 2010;8(3): 151-160. doi: 10.1038/nrclinonc.2010.223

Tesniere A, Apetoh L, Ghiringhelli F, et al. Immunogenic cancer cell death: a key-lock paradigm. Curr. Opin. Immunol. 2008;20(5): 504-511. doi: 10.1016/j.coi.2008.05.007

Kroemer G, Galluzzi L, Kepp O, et al. Immunogenic cell death in cancer therapy. Annu. Rev. Immunol. 2013;31: 51-72. doi: 10.1146/annurev-immunol-032712-100008

Obeid M, Tesniere A, Ghiringhelli F, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat. Med. 2007;13(1): 54-61. doi: 10.1038/nm1523

Michaud M, Xie X, Bravo-San Pedro JM, et al. An autophagy-dependent anticancer immune response determines the efficacy of melanoma chemotherapy. Oncoimmunology 2014;3(7): e944047. doi: 10.4161/21624011.2014.944047

Ghiringhelli F, Apetoh L, Tesniere A, et al. Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat. Med.2009;15(10): 1170-1178. doi: 10.1038/nm.2028

Garg AD, Krysko DV, Verfaillie T, et al. A novel pathway combining calreticulin exposure and ATP secretion in immunogenic cancer cell death. EMBO. J. 2012;31(5): 1062-1079. doi: 10.1038/emboj.2011.497

Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007;13(9): 1050-1059. doi: 10.1038/nm1622

Shiratsuchi A, Watanabe I, Takeuchi O, et al. Inhibitory effect of Toll-like receptor 4 on fusion between phagosomes and endosomes/lysosomes in macrophages. J. Immunol. 2014;172(4): 2039- 2047. doi: 10.4049/jimmunol.172.4.2039

Tesniere A, Panaretakis T, Kepp O, et al. Molecular characteristics of immunogenic cancer cell death. Cell. Death. Differ. 2018;15(1): 3-12. doi: 10.1038/sj.cdd.4402269

Chaput N, De Botton S, Obeid M, et al. Molecular determinants of immunogenic cell death: surface exposure of calreticulin makes the difference. J. Mol. Med. 2007;85(10): 1069-1076. doi: 10.1007/s00109-007-0214-1

Obeid M, Tesniere A, Panaretakis T, et al. Ecto-calreticulin in immunogenic chemotherapy. Immunol. Rev. 2007;220: 22-34. doi: 10.1111/j.1600- 065X.2007.00567.x

Bezu L, Sauvat A, Humeau J, et al. eIF2alpha phosphorylation: A hallmark of immunogenic cell death. Oncoimmunology 2018;7(6): e1431089. doi: 10.1080/2162402X.2018.1431089

Nikesitch N, Lee JM, Ling S, et al. Endoplasmic reticulum stress in the development of multiple myeloma and drug resistance. Clin. Transl. Immunology 2018;7(1): e1007. doi: 10.1002/cti2.1007

Corazzari M, Gagliardi M, Fimia GM, et al. Endoplasmic reticulum stress, unfolded protein response, and cancer cell fate. Front Oncol 7: 78. doi: 10.3389/fonc.2017.00078

Madden E, Logue SE, Healy SJ, et al. The role of the unfolded protein response in cancer progression: From oncogenesis to chemoresistance. Biol. Cell. 2019;111(1): 1-17. doi: 10.1111/boc.201800050

Staniforth V, Wang SY, Shyur LF, et al. Shikonins, phytocompounds from Lithospermum erythrorhizon, inhibit the transcriptional activation of human tumor necrosis factor alpha promoter in vivo. J. Biol. Chem. 2017;279(7): 5877-5885. doi: 10.1074/jbc.M309185200

Su PF, Staniforth V, Li CJ, et al. Immunomodulatory effects of phytocompounds characterized by in vivo transgenic human GM-CSF promoter activity in skin tissues. J. Biomed. Sci. 2008;15(6): 813-822. doi: 10.1007/s11373-008- 9266-7

Chiu SC, Yang NS. Inhibition of tumor necrosis factor-alpha through selective blockade of Pre-mRNA splicing by shikonin. Mol. Pharmacol. 2007;71(6): 1640-1645. doi: 10.1124/mol.106.032821

Chen HM, Wang PH, Chen SS, et al. Shikonin induces immunogenic cell death in tumor cells and enhances dendritic cell-based cancer vaccine. Cancer. Immunol Immunother. 2012;61(11): 1989-2002. doi: 10.1007/s00262-012-1258-9

Yin SY, Efferth T, Jian FY, et al. Immunogenicity of mammary tumor cells can be induced by shikonin via direct binding-interference with hnRNPA1. Oncotarget 2016;7(28): 43629-43653. doi: 10.18632/oncotarget.9660

Garg AD, Vandenberk L, Koks C, et al. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of high-grade glioma. Sci. Transl .Med 2016;8(328): 328ra327. doi: 10.1126/scitranslmed.aae0105

Krysko DV, Garg AD, Kaczmarek A, et al. Immunogenic cell death and DAMPs in cancer therapy. Nat. Rev. Cancer. 2012;12(12): 860-875. doi: 10.1038/nrc3380

Turrini E, Catanzaro E, Muraro MG, et al. Hemidesmus indicus induces immunogenic death in human colorectal cancer cells. Oncotarget 2018;9(36): 24443-24456. doi: 10.18632/oncotarget.25325

Castaneda DM, Pombo LM, Uruena CP, et al. A gallotannin-rich fraction from Caesalpinia spinosa (Molina) Kuntze displays cytotoxic activity and raises sensitivity to doxorubicin in a leukemia cell line. BMC. Complement. Altern. Med. 2012;12: 38. doi: 10.1186/1472-6882-12-38

Uruena C, Gomez A, Sandoval T, et al. Multifunctional T lymphocytes generated after therapy with an antitumor gallotanin-rich normalized fraction are related to primary tumor size reduction in a breast cancer model. Integr. Cancer. Ther. 2015;14(5): 468-483. doi: 10.1177/1534735415596425

Gomez-Cadena A, Uruena C, Prieto K, et al. Immune-system dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model. Cell. Death. Dis. 2016;7(6): e2243. doi: 10.1038/cddis.2016.134

Prieto K, Cao Y, Mohamed E, et al. Polyphenol-rich extract induces apoptosis with immunogenic markers in melanoma cells through the ER stress-associated kinase PERK. Cell. Death. Discov 2019;5: 134. doi: 10.1038/s41420-019-0214-2

Ren Y, Wei M, Still PC, et al. Synthesis and antitumor activity of ellagic acid peracetate. ACS. Med. Chem. Lett 2012;3(8): 631-636. doi: 10.1021/ml300065z

Li X, Dong W, Nalin AP, et al. The natural product chitosan enhances the anti-tumor activity of natural killer cells by activating dendritic cells. Oncoimmunology 2018;7(6): e1431085. doi: 10.1080/2162402X.2018.1431085

Deng Y, Chu J, Ren Y, et al. The natural product phyllanthusmin C enhances IFN-gamma production by human NK cells through upregulation of TLR-mediated NF-kappaB signaling. J. Immunol 2014;193(6): 2994-3002. doi: 10.4049/jimmunol.1302600

Kunnumakkara AB, Anand P, Aggarwal B. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer. Lett. 2008;269(2): 199-225. doi: 10.1016/j.canlet.2008.03.009

Chang YF, Chuang HY, Hsu CH, et al. Immunomodulation of curcumin on adoptive therapy with T cell functional imaging in mice. Cancer. Prev. Res. (Phila) 2012;5(3): 444-452. doi: 10.1158/1940-6207.CAPR-11-0308

Dai Y, Kato M, Takeda K, et al. T-cell-immunity-based inhibitory effects of orally administered herbal medicine juzen-taiho-to on the growth of primarily developed melanocytic tumors in RET-transgenic mice. J. Invest. Dermatol. 2001;117(3): 694-701. doi: 10.1046/j.0022- 202x.2001.01457.x

Foster K, Younger N, Aiken W, et al. Reliance on medicinal plant therapy among cancer patients in Jamaica. Cancer Causes Control 2017;28(11): 1349-1356. doi: 10.1007/s10552-017-0924-9

Hernandez JF, Uruena CP, Cifuentes MC, et al. A Petiveria alliacea standardized fraction induces breast adenocarcinoma cell death by modulating glycolytic metabolism. J.Ethnopharmacol 2014;153(3): 641-649. doi: 10.1016/j.jep.2014.03.013

John F.Hernández CPU, Tito A.Sandoval, Maria C.Cifuentes, et al. A cytotoxic Petiveria alliacea dry extract induces ATP depletion and decreases βF1-ATPase expression in breast cancer cells and promotes survival in tumor-bearing mice. Revista Brasileira de Farmacognosia 2017;27(3): 306- 314. doi: 10.1016/j.bjp.2016.09.008

Junio HA, Sy-Cordero AA, Ettefagh KA, et al. Synergy-directed fractionation of botanical medicines: a case study with goldenseal (Hydrastis canadensis). J. Nat. Prod. 2011;74(7): 1621-1629. doi: 10.1021/np200336g

Ettefagh KA, Burns JT, et al. Goldenseal (Hydrastis canadensis L.) extracts synergistically enhance the antibacterial activity of berberine via efflux pump inhibition. Planta. Med 2011;77(8): 835-840. doi: 10.1055/s-0030-1250606

Lovelace ES, Polyak SJ. Natural products as tools for defining how cellular metabolism influences cellular immune and inflammatory function during chronic infection. Viruses 2015;7(12): 6218- 6232. doi: 10.3390/v7122933

Bolognesi ML, Budriesi R, Chiarini A, et al. Design, synthesis, and biological activity of prazosin-related antagonists. Role of the piperazine and furan units of prazosin on the selectivity for alpha1-adrenoreceptor subtypes. J. Med. Chem. 1998;41(24): 4844-4853. doi: 10.1021/jm9810654

Melchiorre C, Andrisano V, Bolognesi ML, et al. Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer's disease. J. Med. Chem 1998;41(22): 4186-4189. doi: 10.1021/jm9810452

Bolognesi ML, Cavalli A. Multitarget drug discovery and polypharmacology. Chem.Med.Chem 2016;11(12): 1190-1192. doi: 10.1002/cmdc.201600161

Wing Lam SB, Fulan Guan, Zaoli Jiang, et al. The four-herb Chinese medicine PHY906 reduces chemotherapy-induced gastrointestinal toxicity science translational medicine 2010;2(45): 45ra59. doi: 10.1126/scitranslmed.3001270

Gatti A, Sabato E, Di Paolo AR, et al. Oxycodone/paracetamol: A low-dose synergic combination useful in different types of pain. Clin. Drug. Investig. 2010;30 (Suppl 2): 3-14. doi: 10.2165/1158414-S0-000000000-00000

Chung J, DiGiusto DL, Rossi JJ. Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert. Opin. Biol. Ther .2013;13(3): 437-445. doi: 10.1517/14712598.2013.761968

Pirrone V, Thakkar N, Jacobson JM, et al. Combinatorial approaches to the prevention and treatment of HIV-1 infection. Antimicrob Agents Chemother 2001;55(5): 1831-1842. doi: 10.1128/AAC.00976-10

Nanayakkara AK, Follit CA, Chen G, et al. Targeted inhibitors of P-glycoprotein increase chemotherapeutic-induced mortality of multidrug resistant tumor cells. Sci. Rep 2018;8(1): 967. doi: 10.1038/s41598-018-19325-x

Mukhtar H, Ahmad N. Tea polyphenols: prevention of cancer and optimizing health. Am J. Clin. Nutr 2000;71(6 Suppl): 1698S1702S; discussion 1703S-1694S. doi: 10.1093/ajcn/71.6.1698S

Shimizu M, Deguchi A, Lim JT, et al. (-)-Epigallocatechin gallate and polyphenon E inhibit growth and activation of the epidermal growth factor receptor and human epidermal growth factor receptor-2 signaling pathways in human colon cancer cells. Clin. Cancer. Res. 2005;11(7): 2735-2746. doi: 10.1158/1078-0432.CCR-04-2014

Lambert JD, Hong J, Yang GY, et al. Inhibition of carcinogenesis by polyphenols: evidence from laboratory investigations. Am. J. Clin. Nutr. 2005;81(1 Suppl): 284S-291S. doi: 10.1093/ajcn/81.1.284S

Nam S, Smith DM, Dou Q. Ester bond-containing tea polyphenols potently inhibit proteasome activity in vitro and in vivo. J. Biol. Chem 2001;276(16): 13322-13330. doi: 10.1074/jbc.M004209200

Adhami VM, Siddiqui IA, Ahmad N, et al. Oral consumption of green tea polyphenols inhibits insulin-like growth factor-I-induced signaling in an autochthonous mouse model of prostate cancer. Cancer. Res. 2004;64(23): 8715-8722. doi: 10.1158/0008- 5472.CAN-04-2840

Moreira R, Pereira DM, Valentao P, et al. Pyrrolizidine alkaloids: Chemistry, pharmacology, toxicology and food safety. Int. J. Mol. Sci. 2018;19(6): E1668. doi: 10.3390/ijms19061668

Nortier JL, Martinez MC, Schmeiser HH, et al. Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N. Engl. J. Med. 2000;342(23): 1686-1692. doi: 10.1056/NEJM200006083422301

Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front Pharmacol 2014;4: 177. doi: 10.3389/fphar.2013.00177

Lasso P, Gomez-Cadena A, Uruena C, et al. Prophylactic vs. therapeutic treatment with P2Et polyphenol-rich extract has opposite effects on tumor growth. Front. Oncol. 2018;8: 356. doi: 10.3389/fonc.2018.00356

Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat. Rev. Genet. 2011;12(1): 56- 68. doi: 10.1038/nrg2918

Mencher SK, Wang LG. Promiscuous drugs compared to selective drugs (promiscuity can be a virtue). BMC. Clin. Pharmacol. 2005;5: 3. doi: 10.1186/1472-6904-5-3

Poornima P, Kumar JD, Zhao Q, et al. Network pharmacology of cancer: From understanding of complex interactomes to the design of multi-target specific therapeutics from nature. Pharmacol. Res 2016;111: 290-302. doi: 10.1016/j.phrs.2016.06.018

Fan X, Zhao X, Jin Y, et al. Network toxicology and its application to traditional Chinese medicine. Zhongguo. Zhong. Yao. Za. Zhi 2001;36(21): 2920-2922. PMID: 22308674

Lee AY, Park W, Kang TW, et al. Network pharmacology-based prediction of active compounds and molecular targets in Yijin-Tang acting on hyperlipidaemia and atherosclerosis. J. Ethnopharmacol 2018’221: 151-159. doi: 10.1016/j.jep.2018.04.027

Zhang S, Shan L, Li Q, et al. Systematic analysis of the multiple bioactivities of green tea through a network pharmacology approach. Evid Based Complement Alternat Med 2014: 512081. doi: 10.1155/2014/512081

Gao L, Wang XD, Niu YY, et al. Molecular targets of Chinese herbs: a clinical study of hepatoma based on network pharmacology. Sci. Rep 2016;6: 24944. doi: 10.1038/srep24944

Ramsay RR, Popovic-Nikolic MR, et al. A perspective on multi-target drug discovery and design for complex diseases. Clin. Transl. Med 2018;7(1): 3. doi: 10.1186/s40169-017- 0181-2

Yildirim MA, Goh KI, Cusick ME, et al. Drug target network. Nat. Biotechnol 2007;25(10): 1119-1126. doi: 10.1038/nbt1338

Cavalli A, Bolognesi ML, Minarini A, et al. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008;51(3): 347-372. doi: 10.1021/jm7009364

Liu Z, Du J, Yan X, et al. TCM analyzer: A chemo- and bioinformatics web service for analyzing traditional Chinese medicine. J. Chem. Inf. Model. 2018;58(3): 550-555. doi: 10.1021/acs.jcim.7b00549

Wong YH, Lin CL, Chen TS, et al. Multiple target drug cocktail design for attacking the core network markers of four cancers using ligand-based and structure-based virtual screening methods. B.M.C Med. Genomics 2015;8 (4): S4. doi: 10.1186/1755-8794-8-S4-S4

Kepp O, Menger L, Vacchelli E, et al. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth. Facto. Rev. 2013;24(4): 311-318. doi: 10.1016/j.cytogfr.2013.05.001

Downloads

Published

2023-02-01

How to Cite

Barreto, C. ., & Jandus , A. . (2023). Role of Natural Products in Combating Cancer . Cancer Insight, 1(1), 35–52. https://doi.org/10.58567/ci01010003

Issue

Section

Articles